viernes, 18 de diciembre de 2015

6.3 APLICACIÓN DEL ÁLGEBRA BOOLEANA COMPUERTAS LÓGICAS

El álgebra booleana es una extensión de la lógica matemática, ya que utiliza los mismos principios y operadores lógicos (and, or, not, xor, nand), así como los mismos valores, y gracias a esto John Von Neuman pudo crear la computadora de la primera generación.

Los dispositivos con los que se implementan las funciones booleanas se llaman “compuertas”, y al combinarse han permitido inicialmente la creación del “bulbo", posteriormente la del “transistor” y actualmente la del 'Chip”, elementos con los cuales se construye todo tipo de aparato electrónico digital.

Las computadoras llevan a cabo su trabajo por medio de un microprocesador, el cual es un circuito de alta escala de integracion (LSI) compuesto por muchos circuitos simples como nip-flops, contadores, decodificadores, paradores, etc., todos en una misma pastilla de silicio en donde se utilizan compuertas del algebra booleana para llevar a cabo las operaciones lógicas.

Las microoperaciones que lleva a cabo el microprocesador se realizan en lenguaje binario a nivel bit. Por ejemplo, si A = 110010, B = 011011 entonces el resultado de llevar a cabo las siguientes operaciones en donde intervienen los operadores lógicos (
, , ') es:


A B =110010 011011= 010010

A v B = 110010 v 011011 = 111011

A B = 110010 011011 = 101001

A '= (110010)'= 001101


No hay comentarios:

Publicar un comentario